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What is a SG?

What is a smart grid?

According to the US Energy Independence and Security Act of 2007:

The term “Smart Grid” refers to a modernization of the electricity delivery
system so it monitors, protects and automatically optimizes the operation of its
interconnected elements — from the central and distributed generator through
the high-voltage network and distribution system, to industrial users and
building automation systems, to energy storage installations and to end-use
consumers and their thermostats, electric vehicles, appliances and other
household devices.

Nationwide

Source: NIST Smart Grid
Interoperability Standards Roadmap
(2009.6)




What is a SG?

What Is a smart grid?

B Smart grids can take various forms depending on regional social and economic conditions
and resources, and are adopted in various stages, including the implementation of
technologies, the establishment of social infrastructure, and system reorganization. Adoption
can thus take various paths through various combination of these forms and stages.

B The technologically new concept of a smart grid is to enhance the capability to balance
supply/demand in a power system through the more active participation, both direct and
indirect, of the power demand.

B Key technologies include communication between equipment, energy management, and
storage of electricity

B Smart grids can enable energy use for the maintenance or improvement of living standards,
expansion into other services, or a combination of these uses

B Discussions of smart grids can include super grids such as:

v' An East—West "Green transmission highway” to transmit electricity generated at large-
scale solar or wind farms in the central US

v Electricity transmission cables linking European marine wind farms to demand centers
v' Supergrids such as the trans-Mediterranean grid

Smart grid, a catch-all term that means different things to different people, has become the

latest buzzword in the electric power industry. Everybody is for it, even if nobody is sure w*--**
Means. GE and Google Team To Promote Smart Grid, The Electricity Journal, Volume 21, Issue 9, November 2008 _4_



What will happen?

Variable Nature of Renewable Energy Generation
in case of PV

PV generation has a variable nature due to time and changes of
weather. Here, the nature is referred as “variable”, based on the
understanding that it varies but is predictable to a certain extent.

OO -1 0000
o GOOO BOOO
- 4000 6000
- 2000 4000
- O0-2000

HREREH W
3

e |

76 79 82 gy e,

Fig. 24hour PV output variation in 90days in summer

o U

KRN (MW)
:

1T 4 7 101316 19222528 3134374043 4649 525558616467 7073 76 79 82 85 88 91

Fig. PV output variation at 14:00 in 90 days in summer

-5-



What will happen?

Impact of PV Penetration on Demand-Supply balance

v’ The ultimate impact of PV Penetration on a power system is the
difficulty of supply and demand balance.

v' A power system is requested to keep the stability of various time
range under reduced regulation capability and increased variability.
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What will happen?

What will happen in the long period?

v In the progress to a low carbon power supply with security, the share
of electricity will increase in the total end-use energy consumption.

v Te increase of carbon-free RES, nuclear, and fossil generation will make

a power system less capable to keep the supply-demand balance of

power.

g

Necessity for additional supply-demand balancing resources

Gas combined generation

PV, Wind

Source of figures: CoolEarth Innovative Energy technology Program




What is a SG?

Smart grids support the mass adoption of
renewable energy

The electricity supply/demand balance is currently regulated through concentrated
energy management at major power generation facilities. In the future, when renewable
energy generation is added to the mix, distributed energy management leveraging
greater engagement by the demand side could lead to a better division of labor in

Current control of

regulating the suppl and balance.
j f\/
supply/demand balance ”Q\\ g
Control of supply/demand
balance through ; \/
storage batteries »f,)\\\ @ T

I

Additional adjustments at t
existing generation facilities

A

Should storage batteries
become economically feasible,
the supply/demand balance
could be adjusted via optimal
allocation of storage
equipment

Control of supply/demand
balance through storage A
batteries and more active A\ \\

control on demand side
Additional adjustmené} t

at existing generation
facilities

Storage batteries

If the demand side can take on
part of the regulation of the
supply/demand balance,
economy can grow while
reducing the use of resoul



Centralized/distributed Energy Management

Distributed Energy Management
Home, Building, and Area Energy Management

v HEMS and BEMS are the appropriate hub for the autonomic and

distributed energy management because they can pursue three
targets:

1) enhancement of quality of life and work environment,
2) improvement of economy and environmental impact,
3) reinforcement of balancing capability of a power system

v' The distributed energy management autonomously control demand,

energy storage and others. HEMS: Home Energy Management System
v Area EMS will be effective to BEMS: Building Energy Management System
enhance the aUtOI"IOmIC Control Autonomic Cooperative Energy Management System

Including Renewable Energy Resources and Sophisticated Butteries

capability of demand side with ) - s
more resources. '

v Area EMS enables harmonized - A VI ﬁd#
operation between network 1 = [ L%
(centralized EMS) and demand >
(de-centralized EMSs) to
enhance total system quality.

[UTCEEMah.neL.i).Om'nomLm. ]
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Centralized/distributed Energy Management

Renewable Energy Deployment and
Centralized/Decentralized Energy Managcemlerlt
entralize
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-volution of Energy System

A blueprint for future

housings and communities

conditions
L :ﬂﬁ).

br

« Functional cooperation with grid, in addition
to energy saving and comfort

« Maximum use of PV, solar heat, geothermal

and aero thermal heat

« Standardization and low pricing of distributed

Insolation

W

e
5
oN

« Handling a variety of environmental

Weather forecast data
Insolation forecast data

conditions and household compositions

* Quick establishment of awareness of how to
optimally combine diverse technologies

« Quick establishment of awareness in how to
manage the overall operation of devices

3
............

<House model >

/1 Hot water Demand data

energy management and household
information technology are key

Other apphances operation data

| — pm
=== |nformation

Hot water
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Beyond Energy: HEMS’s Future
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When and how far will it be realized?
Expansion of Scope of Smart Grid

« An existing Power System is structured by generation,
transmission, distribution and in-active demands with uni-
directional power flows.

« The increase of controllable distributed loads, generations,
EVs and batteries has been activating the demands and make
the power flows bi-directional.

« The harmonization of centralized/decentralized energy
management will increase the flexibility to accommodate
carbon-free and low carbon energy supply.

« The demand activation brings about availability of new data
and information which enables new energy services, new
energy-related and non-energy-related services, and new
products.

« However, the information and data for new services and
products requires higher specification with a new ICT
infrastructure than original energy requirements.

13-
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-volution of Energy System
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Evolution of Energy System

Japan’s Energy Supply Prospect
in 2050 (MOE 2010.6)

Case Study for CO2 80% Reduction in 2050 (Scenario A:"Supply Side)

« The share of zero-emission energy (ex. PV, Wind, Nuclear) is from 20% to 70%.
« The consumption of fossil fuel is reduced from 450 mTOE to 110 mTOE.
« The CO2 emission from fossil fuel power plant will be treated by CCS.
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Evolution of Energy System

The Implication by an Extreme Case

The utilization of renewable energy, when introduced in the shape of variable
power generation, the issue of demand-supply balance becomes more
difficult to fix as the penetration level increases.

The countermeasures for the issues are more sophisticated operation of the
existing and application of new technologies in operation and asset portfolio
in a series of steps.

Renewable generation forecast and flexible operation of power system

of 4,8,12,16,20% of the assumed total generation of 2030
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Concept of Smart Enerqy Network in Japan

Smart networks of electricity, heat, renewables and natural gas
Integration of central and distributed systems, and all clean energy technologies
Increasing efficiency, flexibility, security, reliability and quality
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Combination of renewable energies and Fuel Cell

Installing Microgeneration (PV + Fuel Cell) for residential use
* Intheindividual house (PEFC) : Commercial at present

* Inthe condominium (PEFC) : Field Test from 2012

* Inthe condominium (SOFC) : Future

ixture; Fuel cells compen h BjeTalala ,
The best mixture; Fuel cells compensate the output i1 [Solar Hear Panel]

instability of PV cells.

Grid power PV generation

Electricity

Battery
Natural :
.................. F ueIceII EV
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-volution of Energy System

Maximum Optimization of Energy System

The wider the optimization area, the more the optimization, from a house,
community, a power system, interconnected power system in Japan and
to the world.

However, there exist:

1)Technological constraints: distribution system, transmission system,
an interconnection between power systems

2)Institutional constraints: codes for integration, transmission system
rules, interconnection and operation rules

3)Security constraints: centralized control of millions of demands affects
stability of energy system and security of each demand. Safety
structure require some constraints on optimization.

Due to the constraints and other specific purposes, there are possibilities
of distributed energy managements, in a cluster of demands, such as a
house, a community, a group of EVs and others.

Energy can be distributed not only by electricity, but also by thermal
energy, fuels and others.

We need to return to the essentials what we need is not energy itself but
services such as comfortable temperature, humidity, brightness, and

motions. _20_




Evolution of Energy System

Integration of Energy System

The Energy system integration is essential for the structural change of energy
in developed and emerging countries.
The drivers:

1)Socio economic condition such as population and economic development
2)Recognition of constraints of natural resources and environment
3)Recognition of economy, stability, security and sustainability

4)Various technologies of supply, deliver, end use

Important viewpoints :
1)Combination with new values

Ex.: EV navigation +Charging Service +Harmonization w/ Power system

Generation forecast + Weather forecast + Power System operation

2) Investment on New Energy Infrastructures

Ex.: Gen. Plants, Transmission and Distribution, pipe lines of gas and heat
3) Investment on existing energy infrastructure for new requirements
4) New products
5) Standards and institutional systems _2 1 _



Direction of initiatives going forward

Strategies for Energy system integration

E Visioning a long-term evolution of markets

v' To incorporate substantial changes such as values, lifestyle, and social system
—Lowering carbon, energy saving

v To incorporate innovation of technology (including sectors where company itself is not a leader)
—Cost reduction of renewable energy and energy storage technologies

v To assume situations in several future years

—ex. CO2 emission target of Japan and others in 2020, 2030, and 2050

B Identify key technologies that drive competitiveness in a future market

v' To incorporate new evaluation indicators and ways of thinking
—New value in supply/demand adjustment relating to changes
in output of renewable energy and in energy storage

v Not to adhere to things that are highly dependent upon today’s markets, systems, etc.
—Possible change of energy prices, taxes, standards and criteria

v To identify Progress in a long-term and uncertain market
— ICT, energy storage, energy management, and generation forecasts

B Formulating plans of business, investment and technology development plans
Progressive redeployment of assets for manufacturing equipment

—Policies for energy mix, energy networks, operating methods, and IT

v' Distribution of resources and personnel development based on long-term perspective
—Technology development, human capacity development

v' Ensure robustness versus long-term uncertainty

-))-
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Smart Grid Demonstration Test

by Power Utllltles (2010 - 2012)

Social requirements for CO2 reduction
Tangible constraints of fossil fuels

¥

Low-carbon power grid
Massive penetration of renewables

Reduction of CO2 from power plants I
(Nuclear, IGCC, CCS)

Possible impacts to power quallty and security

Vision:
Minimizing CO2 emissions and social costs

Enhancing power quality and security by making both the power grid and customers smarter
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METI's Smart Grid Demonstration Test
(2010-2012) House Details
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Smart Grid R&D Activities of Japan

Smart Energy Network Demonstration Project
by Gas utilities ( 2010 - )

Optimum distributed energy management of cogeneration and PV
for the best use of power and heat utilizing ICT technologies
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Demonstration of Solar Cooling and Hot Water Supply System in
Japan

@Tokyo Gas Kumagaya bld. renovation A | Microgeneration |
Built:1984 Solar heat -driven| | Heat PV panels
Floor area: Approx. 1,400 m2 (3floors) [@bsorption chiller- [ SOUTCES
— e heater 4 N X

T /ﬁfjf | ED ’ ﬁ@(ﬁ{_

7y A/
YA g S/ S/ S S S/ A/ A/
Yaa J Sy sy Sy S Sy ey

Solar heat
collectors
(47kW )

Ne—

Supplying Solar heated water to a ——————— 1 ﬁ
neighboring hotel
Pumping power is from PVs

32% 1 [ 29%

Primary energy CO,
reduction ] | reduction J

Utilize solar heat for cooling, heating

and hot water supply
*Replacement of old equipment
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Centralized/distributed Energy Management

Renewable Energy Deployment and

Centralized/Decentralized Energy Management
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Centralized/distributed Energy Management

Renewable Energy Deployment and
Centralized/Decentralized Energy Management
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Long Term Load Forecast:
Background and Objectives

Change of Demand 1

» Energy efficiency Technology
» New demand technology (Heat pump Water Heater, PHEV/EV)

» Energy storage technology(Batteries, Hot water tank)

Penetration of renewable energy
» Load fluctuation by demand side variable generation
» Variation of PV and Wind generation

Fossil fuel distributed generation

» Gas engine generation, Fuel cell
> B EBEERR

Requirement for load curb for long term demand-supply
balance analysis and planning

=1=9]
HE .

R, AR, &fin  FHERICHITSEBENHEHRDIEET L, BXF=EEAXZ6-161




Long term load forecast : Methodology

(1)Atmospheric temperature-load model

. ; ) [ Weekday 24:00 term [ Fiolyday 2490 wrm
> Identification of weekday/holiday hourly S | S ———

temperature-load coefficients. " Weakday 1:00 torm Fictyday 100 i
> A shape of the monthly load curbs are estimated. ‘M"
|8 ;

> The monthly load curbs are adjusted according to ¥ frees.
experienced monthly peak loads and productions.

» The absolute value of the monthly load curbs are adjusted to the estimated
annual peak load and energy production.

p—

ure.|

(2)New demand technology model (for heat pump water heater,

PHEV/EV and battery)

» Estimation of deployment schedule in a power system
» Estimation of hourly kW and kWh by estimation of utilization

(3)PV model

» Estimation of deployment schedule in a power system

» Hourly generation of 8760 hours is estimated according to actual data of
irradiation, atmospheric temperature and wind speed

BEA. . WA, Bfin | FERICH T DBNHFEMROEEFE, BF=EEAR6-161




In 2030

— With the 5% of HPWH, 2.5% of PHEV/EV,
20% of PV (percentage of the maximum load)

—
N

Long term load forecast: Results
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Centralized/distributed Energy Management

Renewable Energy Deployment and
Centralized/Decentralized Energy Management
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Home demand Measurement, Analysis
forecast : Configuration

N

»For distributed energy management for a building, it is necessary to
forecast the energy demand of the building.

»Monitoring is also effective to find energy use with little actual benefit.
Energy efficiency diagnosis can be made effectively using the
monitoring data.

»We are doing the following energy use data collection with 50 homes.

Homes Around 40 apartment houses and some detached houses
which are located 30 km form the heart of Tokyo.

Features of the apartment houses

Space :around100m?2

Habitants :1-5

Appliances : gas water heater, gas floor heater, gas oven,
heat-pump air conditioner, disposer

Monitoring : current of power distribution board by circuit,
points water heater current, room temperature and moisture
(by minute) and gas consumption (by 5 minutes)



Home demand Measurement, Analysis,
forecast : Configuration
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Home demand Measurement, Analysis,
forecast : Clustering of load

user—A frig branch — 2010/05/15
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The change of system marginal production cost
under PV penetration: System cost profile

v'With an assumption of fuel prices, marginal production cost profile of a
power system is calculated and lined up based on technical features of
each generating unit including a pumped storage unit.

v'In our study, we used the fuel prices of 169 $ /bbl. for oil, 1482 $ /ton
for LNG and 182 $ /ton for coal.

v'The production cost of a pumped storage unit is calculated assuming
thermal or nuclear generation which supply pumping energy with an
assumption of pumping efficiency and transmission loss.

W
[=

N
(2

N
(=}

-
v

Marginal Fuel cost (¥/kWh)
z

un

=]

20.0 30.0 40.0 50.0 60.0 70.0 80.0
Systemload (GW)

A, A, L ABBAFEBAEBADOBNRBOEAIA McEZRERE, TREI217-4, (2019)Q) |
T




The change of system marginal production cost under

PV penetration
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The change of system marginal production cost
under PV penetration (in May and in August)

v'The figures show system loads of three cases (Original load, equivalent load
with PV, equivalent load with PV and battery) and corresponding system
marginal production costs for two seasons with minimum and maximum loads.

v'In the cases, 15GW PV are assumed in a power system of 60GW peak load.

v'With PV penetration, the peak of an equivalent system load moves from the
daytime to the evening. The peak load in the evening is reduced with storage.
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HEMS Optimum Op.: Assumption

0 Mixed Integer Linear Programming (MILP) 4
»minimize the home electricity cost ~ ot
3kw ESG HHT
>T|me reSO|Ution Of One hour Photovoltaics(S) 'H@w;zér!{ﬁ

Tank(T) @)

.0
ﬁ&.‘ S
= Hot Water
' EGH Demand(D)

»Target period of 2weeks

1-14 May 2003 (Spring) s (i} ot
1-14 Aug 2003 (Summer) Battery(B) < P Power Grid(G
1-14 Jan 2004 (Winter) < EGB EBG >
EGD - Electricity Flow
Electricity Demand(D) | p Thermal Flow

O Input data

power demand, hot water demand, PV generation, air temp., feed-
water temp., electricity prices, and performance data of appliances

O Output data

electricity flow and thermal flow
= operation time of Heat Pump Water Heater (HPWH)
= charging or discharging time of Battery



HEMS Optimum Op.: Power Rate

0 Current static rate “CP”

buying night (23-7 o’clock): 9.17yen/kWh
morning and evening (7-10, 17-23): 23.13yen/kWh
daytime (10-17): 28.28 or 33.37 (summer) yen/kWh

selling 48 yen/kwh
0 Future dynamic rate “Vx”
buying by home

“V0" : hourly marginal fuel costs plus

I
o

RAKWh
3

.‘_/

o

Marginal Fuel Cost
s 8

the fixed charge 10 yen/kWh 0 10 20 30 40 S0 60 70

Electric Power System Load [GW]

“V1" : hourly marginal fuel costs plus
the fixed charge 10 yen/kWh
under the large PV penetration

($3]

“V2": increasing the differences by 2 times

“V3": increasing the differences by 3 times

selling
1 yen/kWh below buying prices

(32 BN e

o

Electricity Buying
Price [¥/kWh]

o O



Hems Optimum Op.: Dynamic rate V2

[0 Optimum operation schedule with price “V2”
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On May 7, COPs of the HPWH were improved significantly by air
temperature rising about 5 to 8 degrees Celsius during the daytime.
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Realization of HEMS Controller
Simulator using Matlab

HESET L

[ETE T4
(81, SR, EES)
FETET—4
(fais, EHNETH)

Operatlon of an mverter

8788 (KG)

5 Operation of the :
total system  lgi i i




Realization of HEMS Controller
Learning through Probabilistic DP

vHEMS learns the practices of power rate, irradiation, self-demand of
power and hot water

v'HEMS operates based on the learning. The frequency of the learning will
be decided according to the performance of the control.

vIrradiation and self-demand of power and hot water are modeled as
probabilistic variables.
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Realization of HEMS Controller
Performance of the proposed model

v'As the learning method is enhanced, HEMS was successful to reduce the
total power cost which got nearer to the level of a perfect knowledge
model.

v'Although the learning model is enhanced, the load of learning and the
requirement of memory storage increases, we are considering the
controller is realistic commercially based on the state of art of current
ICT technology. 516
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System Load Reformation by HEMS:

Assumption and total operation
v'We assumed HEMS with PVs (average capacity of 3.4 kW), HPWHSs
(average thermal output of 4kW and hot water storage of 370/2002),
batteries (average capacity of 1.5 kW-6kWh) with a certain variation for
50 thousand individual homes.

v'Based on the latest rate curb, MILP decided the optimum operation of
50 thousand individual homes and the power demand of 5 million
homes were calculated by multiplying 100, assuming 30% penetration
of HMES. - \ - , ,

Power price

W Electricity Demand PV Power Generation P urchased Electrioity

Demand

PV generation & - 5
Sell/purchase of power § £

Charge § i

[GWh]

=
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oN &
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[
Heat water storage ; =
Hot water usage § "

o
o
Storage of Heat [TJ]
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The total power demand of 5 million homes
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System Load Reformation by HEMS:
Change of the dynamic power rate

v Based on the latest demand optimized by HEMS, the total power
system load with an original annual peak 60GW was modified.

v'As the revision of the power system load was modified, the hourly
power rate was revised. And the process was iterated 30 times.
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Convergence of power rate under 30 iterations
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System Load Reformation by HEMS:
Change of the system load

v'As a result of iteration of 30 times, the total system demand was
flattened. The system peak load was reduced form 40.2GW at 20
O’clock to 36.3 GW, by 10%.
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Revision of the System load (May 1st)
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System Operation Analysis with

v

v

v

direct/indirect controlled activated demand:

Background and Objectives

Day-ahead scheduling (indirect control) meets the slow and large
imbalances as the Unit Commitment Scheduling does.

Real time dispatch control (direct control) meets the medium-speed
imbalances as Economic Load Dispatch control does.

The fast balancing capability of Load Frequency Control and Governor
Free Control should be secured for fast imbalances in every hour. In
the operation analysis, the capability is checked in the system
operation analysis based on the available capability by unit.

Some activated demand can be estimated to offer the capability of
Load Frequency Control in the future proposing reinforced ICT
infrastructure.

Some activated demand can be estimated to offer the capability of
autonomous Governor Free Control using local frequency information in
the future proposing the securing the layered control structure policy of
S power system.
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System Operation Analysis

with

direct/indirect controlled activated demand:

Methodology

Steps:

1) Preparation of an equivalent system load by subtracting non-dispatchable
generation such as PV and wind from the hourly original load curb.

2) Apply the indirect controlled activated
demand to level the load assuming
the day-ahead scheduling
of HPWH, PHEV/EV charging and local
battery operation including HEMS
control.

3) Based on the leveled load, the
centralized energy management
dispatch the load to generation unit
and the direct controlled activated
demand.

Result of
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System Operation Analysis with
direct/indirect controlled activated demand:

Example of Results

v' The analysis was made for the interconnected 9 power systems of Japan
In 2030 assuming variation features of PV output and demand.

v' The hours with insufficient demand-supply balancing capability were
identified by month, and power system.

v' The renewable energy generation curtailment was calculated to avoid
the insufficiency.

v" Further analysis can be made changing various planning parameters.
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Long term power system planning
Collaboration with Energy planning

v For the future, we need a comprehensive long-term power system
planning analysis, evaluating various indicator such as economy,
reliability, carbon emission and so on.

v" The new technologies of supply and demand and change of life style
affect the planning of a future power system.

v' The collaboration with an energy model is effective because a power
system model cannot generate the new power demand due to the

change of life style and technology.
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Thank You
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